Indian-origin team develops novel gel for biomedical research

New York: A team of Indian-origin researchers from the Harvard University has developed a novel, truly biocompatible hydrogel that can speed up research and development of several promising applications in tissue engineering.

The new gel can be synthesised using “click chemistry” which is a methodology for the quick and practical synthesis of substances using just a few reliable, chemoselective compounds.

“It is injectable so it can be used to deliver cells or drugs to specific places in the body such as a location that has suffered a wound or has been invaded by a tumour,” said associate professor Neel Joshi from the Wyss Institute for Biologically Inspired Engineering at Harvard.

“We are already using it for lots of different things in the laboratory due to how easy it is to synthesise,” he added.

Hydrogels can be up to 99 percent water and are similar in composition to human tissues.

They can take on a variety of forms and functions beyond that of contact lenses.

Biomedical engineers have successfully used hydrogels as 3D molecular scaffolds that can be filled with cells or molecules for bodily injection or application in order to release drugs or stimulate tissue regeneration.

Alginate hydrogels — which are made up of the polysaccharide naturally occurring in brown seaweed — are just such materials.

Joshi leads a team at the Wyss Institute developing new synthetic biomaterials that mimic naturally-occurring materials.

“Other types of hydrogels are much more cumbersome to synthesise,” said Rajiv Desai, study’s first author from the Wyss Institute.

In contrast, the click alginate hydrogel can be created by fast combination of simple solutions.

Once the gel is formed, the click chemistry reactions are irreversible, resulting in a chemo-selective hydrogel primed for use as a therapeutic scaffold.

Furthermore, the click alginate hydrogel is easily customised and modified.

“With our new method, if you wanted to add a fluorescent dye, peptide, or protein to the new click alginate, you could do so within one minute – a truly unprecedented rate,” Joshi pointed out.

At the Wyss, the novel hydrogel is already being used to encapsulate cells in culture and to conduct experiments in a tissue-like environment.

“It is a great material for studying how cells sense the mechanical environments around them,” Desai added.

Alginate hydrogels show promise for tissue engineering and drug delivery applications as they can be designed to dissolve away harmlessly in the body while releasing drugs, growth agents or living cells that can accelerate healing and regeneration.

The findings were reported in the journal Biomaterials.

}